What You Need to Know About Distributed Tracing and Sampling – InApps is an article under the topic Software Development Many of you are most interested in today !! Today, let’s InApps.net learn What You Need to Know About Distributed Tracing and Sampling – InApps in today’s post !

Read more about What You Need to Know About Distributed Tracing and Sampling – InApps at Wikipedia

You can find content about What You Need to Know About Distributed Tracing and Sampling – InApps from the Wikipedia website

New Relic sponsored this post.

Jeremy Castile

Jeremy is a Principal Product Marketing Manager at New Relic, where he’s responsible for go-to-market strategies for application performance monitoring products. He’s been in the technology industry for over 12 years, with roles in engineering, product management, and product marketing. He’s passionate about helping customers drive business growth and deliver more perfect software. Jeremy holds a BS in engineering and an MBA from George Fox University and is an AWS certified data nerd.

Many software teams have made the jump from monoliths to microservices. The benefits of developing apps using microservices are clear: smaller, easier to understand services that can be deployed, scaled, and updated independently. By breaking down applications into smaller services, you have the flexibility to choose whatever technologies and frameworks work best for each component. This flexibility enables you to increase the velocity of getting software from code to production. However, it also introduces greater complexity. For instance, most real-world environments have a mix of legacy monolith apps running alongside newer microservices-based apps.

Read More:   Two Go Developers Who Switched from JavaScript and Ruby – InApps Technology 2022

This software complexity can create major headaches when you have to track down and resolve issues. Take a basic e-commerce application stack, for example. When end users make an online purchase, a series of requests travel through a number of distributed services and backend databases. The path of those requests may go through a storefront, search, shopping cart, inventory, authentication, third-party coupon services, payment, shipping, CRM, social integrations, and more. If there’s an issue with any of those services, customer experience can suffer. In fact, according to one study, a whopping 95% of respondents will leave a website or app due to a bad experience.

Cutting Through the Complexity

You need the ability to quickly troubleshoot errors and bottlenecks in complex distributed systems, before customers are affected. Distributed tracing enables your teams to track the path of every transaction as it travels through a distributed system and analyze the interaction with every service it touches. This capability helps you:

  • Deeply understand the performance of every service.
  • Visualize service dependencies.
  • More quickly and effectively resolve performance issues.
  • Measure overall system health.
  • Prioritize high-value areas for improvement.

Fast problem resolution means you understand how a downstream service “a few hops away” is creating a critical bottleneck. Just as important, effective problem resolution means you gain insight into how to prevent reoccurrence, either by optimizing code or some other means. If you can’t determine when, why, and how an issue happens, small defects may continue to linger in production until a perfect storm of events aligns, and the system breaks all at once. Distributed tracing provides you with a detailed view of individual requests, so you can see precisely what parts of the larger system are problematic.

Surfacing Useful Information with Distributed Tracing

Distributed tracing is a powerful tool, but not all traces are equally actionable. When you use a distributed tracing tool, you’re most likely trying to answer a few critical questions quickly, such as:

  • What’s the overall health and performance of my distributed system?
  • What are the service dependencies across my distributed system?
  • Are there errors in my distributed system, and if so, where are they?
  • Is there unusual latency between or within my services, and if so, what’s causing it?
  • What services are upstream and downstream of the service that I manage?
Read More:   Eclipse Foundation Gears Up the Software-Defined Vehicle – InApps Technology 2022

When every service in a distributed system is emitting trace telemetry, even if there are only a handful of services, the amount of data can quickly become overwhelming. The vast majority of transaction requests across a distributed system will complete without any issue, making most trace data statistically uninteresting and generally unhelpful for quickly finding and resolving problems.

Sifting through every trace to find errors or latency becomes the classic “needle in the haystack” problem. No human is able to observe, analyze, and make sense of every trace across a distributed system in real-time. But you can use a distributed tracing tool to sample the data and surface the most useful information on which to take action.

Let’s take a look at a couple of different types of sampling methods for distributed tracing.

Head-Based Sampling Overview

To process large amounts of trace data, most traditional distributed tracing solutions use some form of head-based sampling. With head-based sampling, the distributed tracing system randomly selects a trace to sample before it has finished its path through many services (hence the name “head”-based). Here are the advantages and limitations of head-based sampling:


  • Works well for applications with lower transaction throughput.
  • Fast and simple to get up and running.
  • Appropriate for blended monolith and microservice environments, where monoliths still reign supreme.
  • Little-to-no impact on application performance.
  • Low-cost solution for sending tracing data to third-party vendors.
  • Statistical sampling gives you enough transparency into your distributed system.


  • Traces are sampled randomly.
  • Sampling is done before a trace has fully completed its path through many services, so there’s no way to know upfront which trace may encounter an issue.
  • In high-throughput systems, traces with errors or unusual latency might be sampled out and missed.

Tail-Based Sampling Overview

In high-volume distributed systems that contain critical services and where every error must be observed, tail-based sampling provides a solution. With tail-based sampling, the distributed tracing solution observes and analyzes 100% of traces. Sampling is done after traces have fully completed (hence the name “tail”-based). Because sampling is done after traces have fully completed, traces with the most actionable data — like errors or unusual latency — can be sampled and visualized so you can quickly pinpoint exactly where the issues are. This capability helps to solve that classic “needle in the haystack” problem. Here are the advantages and limitations of tail-based sampling:

Read More:   Matrix Offers Red Pill to Slack Users – InApps 2022


  • 100% of traces are observed and analyzed.
  • Sampling is done after traces have fully completed.
  • You can visualize traces with errors or uncharacteristic slowness more quickly.

Limitations (of existing solutions)

  • Additional gateways, proxies, and satellites are required to run sampling software.
  • You must endure further toil of managing and scaling third-party software.
  • You face additional costs for transmitting and storing vast amounts of data.

Flexibility to Choose

As the adoption of new technologies proliferates across the software world, application environments will continue to become increasingly complex. Your DevOps and software teams will be developing and managing apps in both monolith and microservices environments, and distributed tracing tools will be needed to help you quickly find and resolve issues across any technology stack. Not every trace is equal, and the different types of sampling for distributed tracing data each have advantages and limitations. You need the flexibility to choose the best sampling method based on the use case and cost/benefit analysis, taking into consideration the monitoring needs for each application.

Feature image via Pixabay.

Source: InApps.net

Rate this post
As a Senior Tech Enthusiast, I bring a decade of experience to the realm of tech writing, blending deep industry knowledge with a passion for storytelling. With expertise in software development to emerging tech trends like AI and IoT—my articles not only inform but also inspire. My journey in tech writing has been marked by a commitment to accuracy, clarity, and engaging storytelling, making me a trusted voice in the tech community.

Let’s create the next big thing together!

Coming together is a beginning. Keeping together is progress. Working together is success.

Let’s talk

Get a custom Proposal

Please fill in your information and your need to get a suitable solution.

    You need to enter your email to download


      Success. Downloading...